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¢ x ('“-RAUZY GRAPHS FOR INFINITE ARRAYS
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ABSTRACT. Word representable graphs is a branch of study in combinatorics of
words. One such word representable graph is £ x £'-Rauzy graph. Some structural
properties of £ x ¢'-Rauzy graphs of order k x k' for infinite periodic arrays are
studied such as the number of components in it and structure of each component
in it. Given some larger values of k, k', the structure of the £ x £'-Rauzy graphs of
order k x k' for infinite periodic arrays can be studied from a lower order m X n,
which is the size of the primitive root of the infinite periodic array. It is proved
that the £ x ¢’-Rauzy graph for the infinite Fibonacci array is strongly connected.
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1. INTRODUCTION

Graphs representing the words/languages are one of the important studies in
combinatorics of words as well as theoretical computer science. Some of the word
representable graphs are de Bruijn graphs, Rauzy graphs, half range Rauzy graphs
and ¢-Rauzy graphs. In this article, we define and study the £ x ¢’-Rauzy graphs for
arrays.

Let ¥ = {a1,--- ,a,} be an alphabet, and ©* be the set of all one-dimensional
words of length k that are formed by the symbols from . A word u of length k
formed from ¥ can be written as u = uq - - - ug or u = u[l, kl.

A de Bruijn graph G of order k for an alphabet ¥ is a directed graph with the
vertex set V(G) = ¥¥ and for u,v € V(G), e = uv forms an arc iff uguz---uj =
v1vg - - Ug—1. In [7], de Bruijn proves that for any de Bruijn graph of order k with
2F vertices, there are 22"~k different Hamiltonian cycles.

A set FF C ¥* is said to be a factorial language if it contains all the fac-
tors/subwords of its words. Let F(k) = F N ¥*. F, is the set of all factors of
w, and Fy,(m) is the set of all factors of w of length m.

A Rauzy graph of order k for a factorial language F, is a directed graph with
the vertex set V' = F(k) and for any two vertices u and v, e = wv forms an arc
iff wogus - ur = vivy---vp_1 and wvg € F(k + 1). Rauzy graphs are widely used
in finding the complexity of words of finite lengths. In 1991, Arnoux and Rauzy
investigated the sequences with complexity 2n + 1. G. Rote in [12] went one step
further to Arnoux and Rauzy by constructing the sequences with complexity 2n
using Rauzy graphs.

In [10], the authors introduced a special variant of Rauzy graphs by altering

the sharing length k£ — 1 to g (or k%l, % if k is odd) and called it as half range
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Rauzy graphs. The idea of altering the sharing length to half the length of the word
represented by vertex was inspired by Adleman in [1].

A half range Rauzy graph of order & for a factorial language F', is a directed graph
with the vertex set V' = F(k) and for any two vertices u and v, e = wv forms an

arc iff u[% + 1, |ul] = v[1, %] and the concatenated word uv is again a factor of the
factorial language F', denoted by HRp (k).

In [11], the authors developed another directed graph from the half range Rauzy
graphs and named it as ¢-Rauzy graphs. In an /-Rauzy graph of order k, the
authors generalize the sharing length to 1 < ¢ < k£ among the words represented by
the vertices to form an arc.

An ¢-Rauzy graph of order k for a factorial language F', is a directed graph with
the vertex set V' = F(k) and for any two vertices v and v, e = uv forms an arc
iff uf|u] — €+ 1, |ul]] = v[1,£] and u[l, |ul]v]jv] — €+ 1, |v|]] € F(2k — £), denoted by
¢-Rp (k). The ¢-Rauzy graph is the generalisation of Rauzy graphs and half range
Rauzy graphs.

Periodicity in words play a vital role in solving string matching problems. The
periodicity in two-dimensional words is not as simple as in one-dimensional words,
and it is studied in detail by Amir and Benson [2, 3]. The authors in [8] discuss
several generalizations of the familiar Lyndon-Schiitzenberger periodicity theorem
for two-dimensional words.

In this paper, we extend the definition of /-Rauzy graphs from one-dimensional
words to two-dimensional words (also known as arrays). An £ x ¢-Rauzy graph of
order k x k' for an infinite array or a factorial language F' that has arrays is defined,
and some examples are given in Section 3. In Section 4, we discuss some structural
properties of £x¢'-Rauzy graphs for any infinite periodic array, that includes indegree
and outdegree of vertices, the number of components in the graph and the structure
of those components. In section 5, we obtain a reduction of ¢ x '-Rauzy graph of
order k x k' for infinite periodic arrays to a lower order. In section 6, we prove
that ¢ x £-Rauzy graph of order k x k’ for the infinite Fibonacci array is strongly
connected.

2. PRELIMINARIES

Some basic notations are defined in this section and for more details, one may
refer [4, 5, 8, 9].

Let ¥ = {a1,- - ,a,} be a finite alphabet. An array or a two-dimensional word
x of size m x n is of the form

11 0 Tin
"E:

Tm, °° Tmn

and is denoted by z[(1,1) — (m,n)] or z[(1,1);m x n], where z;; € £,V1 < ¢ <
m,1 <j <n.Inz[(1,1);m X n], m x n denotes the size of the array.

An array y = z[(,7') — (4,4)] is said to be a subword or subarray of x, whose
sizeis (j—i+ 1) x (j/—¢ +1) where 1 <i < j<m, 1< <j <n. An array y is
said to be a prefix (or a suffix) of z if i =1 and ' =1 (or j = m and j' = n resp.),
denoted by pre.(x) (or suf.(x) resp.).
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3*** denotes the set of all arrays, and X™*"™ denotes the set of all arrays of size
mxn. If £ € 2% then 2#*¢ is an array in which k copies of z are in each column
and £ copies of x are in each row whose size is km x nf.

An array x of the form z = y™*™ with either m > 1 or n > 1, is said to be
periodic. An array x is said to be primitive if it is not a power of any array. An
infinite periodic array z = y“*“ is defined by repeating the array y infinite times in
every row and every column. The period of an infinite periodic array = = y“*“ (for
a primitive y) is defined as the size of y.

Let h,, be the mth Fibonacci word, where hg = b, h1 = a, hy, = hyp—1hm—2, m >
2. The words h,,, are referred to as the finite Fibonacci words. Let F,,, be the mt" Fi-
bonacci number, where |hy,| = Fy,. The limit g1 = n%gnoo hyy, is called the infinite Fi-

bonacci word. The infinite Fibonacci word is given by g1 = abaababaabaababaab. . .,
whose m" letter is b (resp., a) if |[(m + 1)7] — |m7] = a (resp., b), where
T = @,n > 1. Let go = cdeededeedeededeed - - -, be another infinite Fibonacci
word on an alphabet {c,d}. An infinite Fibonacci array can be defined as f =

[gla 92,91,91,92,91,92,91,91,92, " - * }Tv Where [1’, y]T = :; fOI' any two One_dimenSional

words z,y on 2.

A set F' C X*** is said to be factorial language if it has all subarrays of the arrays
in it, and the factorial language for an infinite array w is the language of subarrays
of w, denoted by F,,. Also, F(k x k') = LXK N F ie. the set of all arrays in the
factorial language F' whose size is k x k'.

A labeled polyomino or a brick is a mapping z : A — ¥/, where A is a finite
subset of Z x Z and ¥’ is a finite alphabet.

For example, z : {(1,1),(1,2),(2,2),(2,3)} — {a,b, c,d} is defined by

and the brick is

A directed graph D has a non empty vertex set V and an arc set E. An arc
e = (u,v) € E is an ordered pair of vertices u and v, also written as e = uv. In an
arc e = (u,v), we say that the arc e leaves the vertex u and enters the vertex v. The
indegree/ outdegree of a vertex v is defined as the number of arcs entering/ leaving
v, denoted by degin(v)/ degous(v). For any vertex v, the arc (v,v) € E is known as
the self loop.

3. ¢ x '-RAUZY GRAPHS FOR INFINITE ARRAYS

We extend the idea of ¢-R,(m) in [11] from one-dimensional words to two-
dimensional words.
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For any two arrays u,v € F(k x k'), if the suf.(u) of size £ x £’ is same as the
pre.(v) of size £ x £ then the brick formed by the arrays u, v is represented as

ui,1 cee UL,k 0/ +1 T U, k!
Uk—01 " Uk—0, k' —0/+1 T Uk—0,k
Uk—p4+1,1 - Uk—f41 kK —0'+1 °° Uk—r+1k  Vie41 e U1k’
Uk 1 s Uk k/—¢/+1 s Uy Kk Ve o' +1 tee Ve k!
V41,1 ce V1,0 Ver1,0041 = U1 k!
Vk,1 e Vg 0/ Ve po+1 Uk, k!

and denoted by by, .

Definition 1. An ¢ x ¢'-Rauzy graph of order k X k' for a factorial language F
that has arrays (or for an infinite array w), is a directed graph (V, E) where V =
F(k x K) (or Fy(k x k') resp.) and an ordered pair of vertices (u,v) € E iff the
suf.(u) of size £ x £' is same as the pre.(v) of size £ x £
e u[(k—0+1,K =0 +1) = (k)] =v[(1,1) = (£,0))
and an array x of size 2k — £ x 2k’ — (' that contains the brick by, is also in
F (or Fy resp.), i.e., x € F(2k—€x2K' —0") (or F,(2k —€x2k' —0) resp.). Rauzy
graph for a factorial language that has arrays is denoted by £ x '-Rp(k x k'), and
that for an infinite array is denoted by £ x £'-Ry,(k x k).

In this article, we discuss the properties of ¢ x ¢'-Rauzy graphs of order k x k'
for infinite periodic arrays and the infinite Fibonacci array. Let us start with some
examples.

ap az a1 az ai ao
, where x = a3 a4 a3 a3 a4 a3z is an array of size
as as as ag Gg ag
3x 6. The £ x {'-Ry(4 x 7) is a directed graph with vertices
w[(1,i) = (4,6 +13)] fori=1to6
v = wl(2,i) = (5,6 +1)] fori="7to12
w[(3,i) — (6,6 +1)] fori=13to 18
The graphs of 2 x 5-Ry,(4 x 7) and 1 x 1-R,(4 X 7) are shown in Figure 1.

Example 2. Let [ be the infinite Fibonacci array formed from the alphabet {a,b, ¢, d},
as defined in preliminaries. The 1 x 1-R(2 x 2) is a directed graph shown in Figure

Example 1. Let w = z%*%

. . a b b a a a c d d c
2wzthvertzcesulzc & u2=d o ’LL3=C o U4=a b uszb @ Ug =
cc o _a bu—b a ~_a.a
) 7_0, I 8_b a’ 9_a a

4. £ x {'-Ry(k x k') FOR INFINITE PERIODIC ARRAYS

In this section, we discuss some structural properties of £ x £'-R wxw (k X k') such
as the number of components in it and structure of each component.
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FIGURE 1. £ X {'-R,,(4 x 7)

FIGURE 2. 1 x 1-Rf(2 x 2)

In an array w = x“*“, we consider x to be a primitive array throughout the section
4 and section 5, as even if x is not primitive, x can be written as x = yTXT/ where y is
1,1 %12 0 Tin
T2,1  X22 -t T2n
a primitive array. Also, we consider only the arrays, t = . . . . such
TImal Tm2 - Tmn
that no two one-dimensional words x1 1212+ - 1,0, 21222 - T2n, ", Tm,1Tm,2 " " * Tmyn

)

are conjugates.
Since x is primitive, the infinite periodic array w has period m x n, and hence,

(1) wl(gm +i,pn+j) = (gm +',pn + j')] = w[(i, j) = (7', 5')]

1<i<i"<m, 1<j<j <n, pgeN.
The proofs of Proposition 4.1 and Proposition 4.4 are similar to that of, in [10],
which can be extended to infinite periodic arrays.

Proposition 4.1. If 2¥*% is an infinite array of period m X n, then there are mn

subarrays of size k x k', where k > m and k' > n.
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Corollary 4.2. The number of vertices in an { x {'-Rauzy graph of order k x k' is
mn, where k > m and k' > n.

Corollary 4.3. The number of arcs in an £ x {'-Rauzy graph of order k x k' is mn,
where k> m and k' > n.

Proposition 4.4. Let w = 2% be an infinite array of period m x n, where m,n €
N. For anyv € V(£ x £'-Ry(k x k'), degout(v) > 1 and degi,(v) > 1.

By Corollary 4.2, Corollary 4.3 and Proposition 4.4, we state the following coroal-
laries.

Corollary 4.5. Let w = a2¥*¥. If k > m and k' > n, then for each v € V(£ x {'-
Ruw(k x K)), degin(v) = degout(v) = 1.

Xw

Corollary 4.6. Let w = ¥ If k > m and k' > n, then each component of
£ x l-Ry(k x k') is a directed cycle with atleast 2 vertices or a self loop.

We see that ¢ x £-Rauzy graphs have cycles or self loops as a component in it,
and now, let us find that for what values of k, &', ¢, ¢ it occurs.

Theorem 4.7. Let w = z¥*% and size of x is mxn. All the arcs in £ x'-Ry,(kx k')
are self loops <= k=qm+L, k' =pn+/{, p,ge N, £L<m, ' <n.

Proof. Let us assume that all the arcs in £ X ¢-R,,(k x k') are self loops, and suppose
k # gm+Lor k' # pn+{'. For every vertex v = w[(i,j) — (i+k—1,j+k"—1)], there
always exists a vertex v' = w[(i+k—L,j+k' =) = (i+2k—€0—1,5+ 2k —¢' —1)]
such that vv’ forms an arc. This is a contradiction to the assumption that all the
arcs are self loops.

Conversely, if k = gm+ £, k' =pn+/{', p,q € N for £ < m, ¢ < n, then the suffix
array of size £ x £’ is same as the prefix array of size £ x ¢ in any vertex v. So, an
arc that leaves the vertex v; enters the same vertex.

Hence, all the arcs in £ x ¢'-R,,(k x k') are self loops <= k = gm + ¢ and
K =pn+/. O

The graph of 1 x 1-R,,(4 x 7) in Figure 1 illustrates Theorem 4.7 that all the arcs
in the graph are self loops.

Next, we find the number of cycles in any £ x -R,,(k x k), and length of each
cycle.

Theorem 4.8. Let w = 2¥*% and the size of v is mxn. Fork # qm-+{, k' # pn+0',
q¢,p €N, k> m,k' > n, the { x {'-Rauzy graph of order k x k' has a-components
and each component is a [3-cycle, where

(1) a =" and = lem(*Gn) LmEam)y for £ k and € £ K.
(2) a=m-gcd(k' —¥',n) andﬁfwforf—k and ' £ K.
(3) a=n-gcd(k —{,m) andﬂf%forf’:k’ and £ # k.

Proof. By Corollary 4.6, the graph ¢ x ¢'-R,,(k x k') contains cycles with atleast
two vertices or a self loop. Given k # gm + £ and k' # pn + ¢/, the existence of
self loop is eliminated by Theorem 4.7, and so it contains only cycles with atleast
two vertices. Let us choose a vertex arbitrarily, (say v1) and it lies on a cycle with
atleast two vertices.
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v1
B oo
or
Suff.of vy o
Pref.of vy
or :
Suff.of v
“Pref. of v
or
Suff.of va
Up
e
or
: Suff.of vpi:
Pref.of v
or
Suff.of vy

FIGURE 3. The brick formed by a cycle C : viva---vpv1

The array associated with a cycle vjvy---vpv1 is the smallest array that con-
tains the brick formed by the cycle vivg---vpv;. The brick formed by a cycle
C : viva---vpv1 is shown in the Figure 3. Consider the brick formed by the cy-
cle C': vivg---vpv1. Let us count the number of columns in this brick. There are
k' columns in the array of the vertex v;. The prefix of size £ x ¢’ of the vertex vy is
shared with first vertex vy, and so there are only k' — ¢ columns to be counted in
vy. Likewise, there are only k' — ¢ columns to be counted from vy to vp—1. In the
vertex vp, the counting differs for ¢/ < %l, 0> %, and ¢/ = %/
First, let us consider that ¢ < %/ There are ¢’ columns of the prefix word of size
¢ x 0 of v, counted in vp_1, and ¢ columns of the suffix word of size ¢ x £’ of v,
coincides with v;. So, there are k' — 2¢ columns yet to be counted in v,. Hence,
there are k' + (p— 2)(K' — ') + k' — 2¢' = p(k’ — ¢') columns in the brick. In a similar
way for £/ > %/ and ¢ = %, one can count the number of columns in v, and find
that the number of columns in the brick formed by C is p(k’ — ¢').

The number of columns in a brick formed by the cycle C is a multiple of k' — ¢
in all the cases. As v, makes an arc with vertex v;, the number of columns is also
a multiple of n (the number of columns in ) in all the cases.

The number of rows in a brick formed by a cycle C can be counted in a similar
way, and we see that it is p(k —¥€). As v, makes an arc with vertex vy, the number of
rows is also a multiple of m (the number of rows in z) in all the cases ¢ < %, ‘> %
and ¢ = %

Proof of 1. The number of columns in a brick formed by a cycle is a multiple of
k' — ¢, and also a multiple of n in all the cases. Thus, the multiple of lem(k' — ¢, n)

687
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is the required number of columns in the smallest array that contains the brick
formed by the cycle C. We observed that the number of the columns is p(k' — ')
i.e. multiple of lem(k’ — ¢',n) = p(k’ — £'). Hence, the number of vertices p in cycle
C' is a multiple of lcm(gf%;;’n).

The number of rows in a brick formed by a cycle is a multiple of & — ¢, and also a
multiple of m. Thus, the multiple of lem(k — ¢,m) is the required number of rows
in the smallest array that contains the brick formed by the cycle C. And, we have
seen that the number of the rows is p(k — ¢) i.e. multiple of lem(k—¢, m) = p(k —¢).
Hence, the number of vertices in a cycle is a multiple of %.

Here, the number of vertices is a multiple of m(gf%f;m as well as %. Thus,

£ lem(k'—¢',n)
k./

lem(k—€,m)
—— and 7

the least common multiple o is the required number of
vertices to form a cycle C.
We chose a vertex arbitrarily and the component containing the vertex is l.c.m

(lcmgfl__;l’"), lcmf__f’m))—cycle. Thus, each component in £ x (R, (k x k') is a j3-

cycle, where 8 = [cm(lemW=lin) - lem(htm)y for ¢ £ | and ¢ # K. And, the
number of components is

no. of vertices in the graph _ mn

no. of vertices in each component l.c.m(lcml(jf/f/’n), lcm(kk*efym))'

Thus, £ X £-Ry(k x k') has a-components for £ # k and ¢’ # k', where a = 5
Other two cases can be proved, similarly. O

The graph of 2 x 5-R,,(4 x 7) in Figure 1 illustrates Theorem 4.8.

Corollary 4.9. Let w = 2**%. Fork # qm+4{, k' #pn+{, q¢,p € N and 8 = mn,
the graph of £ x '-Ry,(k x k') is strongly connected.

For example, the 2 x 3-R,,(3 x 5) for an array w = z**% is a strongly connected

graph, where size of z is also 3 X 5. By theorem 4.8, the length of the directed cycle
B8 = lcm(%, w) =lem(5,3) = 15.

5. REDUCTION OF ¢ x {'-RAUZY GRAPHS OF ORDER k X k' FOR z¥“*¥

In this section, we see that for any k > m, k' > n, £ x £'-R,,(k x k') can be reduced
to a lower order or can be studied from some lower order ¢ x -Rauzy graph itself.

Theorem 5.1. Let w = z¥*%. If {1 = im+{, 0§ = i'n+{ then O3 x 0}-Ry(kx k') ~
0 x 'Rk x K).

Proof. The vertex sets V({1 X £]-Ry,(k X k') = V(£ x £-Ryy(k x k")) = Fy(k x k).
Let us consider a vertex u = w[(j,7') = (k+7— 1,k +j —1)] in £1 x 1-Ry,(k x k)
and it forms an arc € = (u,v) with v =w[(j +k — (im + £),7' + k' — (i'n+ ') —
(k+j—(m+0)+k—1LK+5 —(@n+0)+K -D)(=w[(j+k—£,j +k —0) —
(j+2k—£€—1,5'+ 2K — ¢ — 1] by equation (1)). Also, e = (u,v) forms an arc in
€ x 0'-Ry(k x k') by definition. Hence, ¢1 x 1-Ry(k x k') ~ £ x O-Ry,(k x k). O

Theorem 5.2. Let w = 2**¥ and k > m, k' > n. Then for some i,7,5,5' > 1, the
£ X '-Rauzy graph of order k x k', i.e., £ x £'-Ry,(k x k)
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(L= (k—m))x (¢ — (K —n))-Ry(m x n) if{t>k—m, ' >k —n
(+1)m+L—k) x (' +Dn+0 —K)-Ry(mxn) if L<k—m, £LF£k—jm,
&V <k —n, ' £k —j'n

689

) (k—=m) x (K —n)-Ry(m x n) if t=k—jm, L=k —j'n
= (k=m)) x (I + D)n+ 0 —k)-Ry(m x n) if £>k—m,

&V <k —n, ' £k —j'n

(t+1)m+L—k) x (' — (K —n))-Ry(m x n) if L<k—m, LF£Ek—jm,
&V >k —n

Proof. Case 1: Let £ > k—m, ¢ > k' —n. We know £ < k, ¢/ < k' in £ x -
Ruw(k x k). Here, { —k < 0= £ —k+m < m and similarly, £ — k' +n < n. Hence,
sharing an array of size (£ —k+m) x (¢ — k' +n) is possible. Now by Theorem 4.8,
each component in (¢ — (k —m)) x (¢/ — (K — n))-Ry(m x n) is a cycle of length
B = lcm(lcm(n gj_; +n),n)’ lem(m (]f_éf+m),m)) _ lcm(lcmgf_; ,n)7 lcm(]f_f,m))7 and
has o = #* components, which are same as in £ X U-Ry(k x k).

We have shown that both (¢ — (k —m)) x (¢ — (k' — n))-Ry(m x n) and £ x ¢'-
R (kx k') has a number of cycles that are of length 8. Thus for £ > k—m, ¢/ > k'—n,
(£—(k—m))x (0 — (k' —n))-Ry(m xn) ~£€x -Ry(k x k).

Case 2: Let £ <k—m, £ #k—jm, 0! <k'—n, 0! £ K —j'n. fk—2m <L < k—m,
then k—m<m+Ll<k. Ifk—3m<l<k—2m,then k—m <2m+/{ < k. And
going on like this, in general if k — (j +1)m < £ < k—jm, then k—m < jm+{ < k.
Now, it is clear to conclude that if / < k — m there always exists an i such that
k—m < im+{ < k. Similarly, if ¢ < k¥’ — n there always exists an i’ such that
E—n<in+l <k.

Now by theorem 5.1, £ x £'-Ry,(k x k') =~ (im + £) x (i'n + £')-Ry(k x k’). Here,
mtl<k=L—-k+im<0=>Ll—k+(G+1)m<mandin+0 <k =0-F+
(¢’ +1)n < n. Hence, sharing an array of size ({ —k+ (i+1)m) x (&' =K + (' +1)n)
is possible. We saw that im +£ >k —m, i'n+ £ > k' —n and by first case of the
theorem,

(im+0) x (i'n+€)-Ry(kx k)~ ((i+1)m+L—k)x (i + D)n+€ — K )-Ry(m xn).
Case 3: Let £ = k—jm, ¢’ = k'—j'n. By theorem 4.7, (k—jm) x (k'—j'n)-Ry, (kx k')
has only self loops for given j,j’. As there are mn vertices in (k — jm) x (k' — j'n)-
Ruw(k x k'), there are mn self loops in it. Also, (kK — m) x (k' — n)-Ry(m x n) has
mn self loops in it, by definition. Hence,

Lx O-Ry(k x k)~ (k—m) x (k' —n)-Ry(m x n)

For other cases of £ and ¢/, it can be proved in a similar way. O

6. ¢ x '-RAUZY GRAPHS FOR THE INFINITE FIBONACCI ARRAY

In this section, we prove that the £ x #’-Rauzy graph of order k x k¥’ for the infinite
Fibonacci array is strongly connected for 1 </ < k, 1 </ <K'

Theorem 6.1. For a given k, k', 0,0/ € N such that 1 < ¢ < k, 1 < ¥ < k', the
¢ x {'-Rauzy graph of infinite Fibonacci array f of order k x k' is strongly connected.

Proof. For a given k, k', ¢,/ € N such that 1 < ¢ < k, 1 < ¢ < K, the distinct
subarrays of size k x k' of infinite Fibonacci array f is the set of all vertices in
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£x V'-Ry(k x k). It is well known that the number of subwords of infinite Fibonacci
one-dimensional word of length £ is k + 1. Thus, it is easy see that the number of
subarrays of the infinite Fibonacci array of size kx k" is (k+1)(k'+1). Let the vertices
of £ x gl-[Rf(k X k’l) be V1,1, 5 VL k/4+15 V2,1, 5 V2 k/4+15° " 5 Vk4+1,15° " 5 Uk+1,k/+1-

For some given k, k', choose m,n such that F,,, < k < Fp41,F, < k' < Foq1.
From Proposition 2.7 in [6], the first occurrences of (k+1)(k’+1) distinct subarrays
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of size k x k' are given by

T1(G:5"); k< K] if 1<j<Fn 1<j<F,
f[(_] + Frt1 — (k + 1)7j/ + Fot1 — (k/ + 1));k} X ]{3/]

FlU, 7+ Fogr — K = 1)1k x K]

if Fp+1<j<k+1 F,+1<j <k +1
f1<j<F, F+1<j7/<Kk+1

G+ Fnpr —k=15)kx k] ifFp+1<j<k+1, 1<j<F,

Using Corollary 3.6 and Proposition 3.9 in [6], all the locations of v; j» in the infinite

Fibonacci array are given by

loc.(vjj) =

where ¢, > 0 in each of those sets. We see that locations of v; j» for any j,j is of

the form

{tFma+ [+ D71 Fpa+4, ' Foa+ [+ 1)7|Fi 2 +5')}
if 1<j<Fpy1—k—11<j<F1-K-1
{(tFn + |+ D)7 |Eper + 4, U+ |+ )7 Fmr +5)}
if Fop—k<j<FEy, Fop—-kK<j<F,
{(tF g + [(E+ D)7 Fop 4 + Fingr — (k4 1),
tF + (U + D)7 P+ + Fopr — (K + 1))}
if Fpo+1<j<k+1, F,+1<j <k +1
{(tFm + [(E+ V7] Fon2 + 4, 'Fp+ (¢ + D7 Fr +57)}
if 1<j<Fpp1—k—-1 Fnu—-kK<jy<F,
{(tFm—1 + [(t+ 1)T] Frpa + 4,
tFpp + (U + D)7 Fy+ 5+ Fopn — (K 4+ 1))}
if 1<j<Fpn-k—1 F,+1<j7<k+1
{(tF + [(t+ D7 | Py 4, € Fasy + [ + )7 Faa + ')}
if Fpi1—k<j<F, 1<j<F,1-K-1
{(tFm 4 [(t + )7 | Frp1 + 7,
tFpp + [+ D)7 Fy+ 5 + Fopr — (K 4+ 1))}
if Foi1—-k<j<FE, F,+1<j<k+1
{(tFmgr + [(E+ V)7 Fop 4 J + Fingr — (k4 1),
tFp1+ [(+ )7 Foea +5')}
if Fp+1<j<k+1, 1<j<F,1—-kK-1
{1 + [+ DT Fp 4§ + Finpn — (K + 1),
tFy + (' + 1)) Facy + )}
if Fp,+1<j<k+1, F,p1—K <j <F,

( bt+ecl(t+)r]+d, b+ +1)7]+d )
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where b, ¢ € {Fn—2, Fn-1, Fn, Fni1}, d € {4,j + Fnr — K+ 1DH Y, ¢ €
{Fn—27 Fn—la an Fn+l}; de {jla.j/ + Fn+1 - (kl + 1)}

Let us consider the path (say Pp) that starts from the subarray of size k x k',
located in the first position of infinite Fibonacci array. By the definition of £ x -
Rauzy graphs, the path P; is given by

L)k x K] = = flA+i(k—0), 1+ (K =)k x K] — -

In path P, it is clear that any subarray of the form f[(1+i(k—£), 1+ (K —¢')); k x k']
is reachable from f[(1,1);k X k'] or v1,1. If atleast one location of each vertex is of
the form (1 +i(k — €),1+ (k' — ¢)), then every vertex is reachable from vy ;.

The integer solution to the equations

1+i(k—0) =bt+c|(t+1)7]+dforeach 1 <j<k+1
1+ (K =)=t +|(t' +1)7] +d foreach 1 < j' <k +1
guarantee that atleast one location of each vertex is of the form (1 +i(k—¢),1+

V(K =) Let 3y =4, zo=t, a3 = [t+ D7, 00 =4, yo=1t/, y3=[(¢' +1)7] be
the variables. The equations can be rewritten as

axy —bry —cxy =d —1, ayy —bys —cys =d — 1

The linear Diophantine equation ajx; — bixes — c1xs = dp has infinite integer
solutions < gcd(ay,by,c1)|ds.

It is well known that any two consecutive Fibonacci numbers are co-prime. And,
gcd(a,b,c) = 1|d, ged(a’, b/, ) =1|d, foreach 1 < j <k+1, 1 <j <K +1.

Now, it is clear that the equations axq —bxs —cx3 = d—1, d'y1 —bys—cy3 =d —1
has infinite integer solutions for each 1 < j < k+1, 1 < 5/ < k' 4+ 1. Thus, every
vertex is reachable from v1; in the path P;. As every vertex is located infinitely
many times in the path P, the vertex vy ,; is reachable from any other vertex. Hence,
0 x 0'-Ry(k x k") is strongly connected. O

7. CONCLUSION

The ¢ x ¢-Rauzy graphs for infinite arrays are defined. The properties of £ x £'-
Rauzy graphs for infinite periodic arrays and the infinite Fibonacci array are studied
in this paper. As locations of subarrays of an infinite array play a vital role in the
study of ¢ x ¢’-Rauzy graphs, and is not yet known for many special words, the
study becomes tougher and interesting to explore much. Further, the study on
special two-dimensional words such as Thue-morse array would be interesting.
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